Logical Qubit Research
Research into logical qubit operation and quantum error correction using neutral atom arrays.
Research Focus
This research thrust investigates continuous quantum computation through programmable logical qubit arrays, demonstrating fault-tolerant operations and quantum error correction below threshold.
Selected Publications
Logical quantum processor based on reconfigurable atom arrays
Nature 626, 58-65 (2024)
D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletic, M. D. Lukin
Demonstrates a reconfigurable atom array processor executing fault-tolerant algorithms, featuring 48 logical qubits, entanglement operations across logical qubit arrays, and error correction below threshold.
High-fidelity parallel entangling gates on a neutral atom quantum computer
Nature 622, 268-272 (2023)
S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletic, M. D. Lukin
Achieves two-qubit entangling gate fidelities exceeding 99.5% using optimized laser pulses and robust gate protocols in programmable neutral atom arrays.
A quantum processor based on coherent transport of entangled atom arrays
Nature 604, 451-456 (2022)
D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletic, M. D. Lukin
Introduces dynamic reconfiguration of entangled atom arrays through coherent transport, enabling universal quantum computation with neutral atoms.
Quantum phases of matter on a 256-atom programmable quantum simulator
Nature 595, 227-232 (2021)
S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletic, M. D. Lukin
Demonstrates programmable quantum simulation with 256 atoms, exploring exotic quantum phases and many-body dynamics.
Technical Background
Neutral atom arrays trapped in optical tweezers provide a scalable platform for quantum computation. Rydberg interactions enable high-fidelity two-qubit gates, while coherent atom transport allows reconfigurable connectivity. These capabilities support fault-tolerant quantum error correction using surface codes and other topological codes.
Related Research Areas
- Fast Readout - Cavity-enhanced detection for rapid qubit measurement
- Dual-Species Architectures - Multiple atomic species for enhanced functionality
- Photonic Control - Scalable optical control systems
Principal Investigator
Mikhail Lukin (Harvard University) Lukin Group Website